Journal of Basic and Applied Engineering Research

Print ISSN: 2350-0077; Online ISSN: 2350-0255; VVolume 2, Number 10; April-June, 2015 pp. 835-838
© Krishi Sanskriti Publications

http://www krishisanskriti.org/jbaer.html

Popularity Tree Operation Algorithms

Priyanka Sehra Gaba' and Jyoti Arora’

L2A.P in PDMCE Bahadurgarh
E-mail: *priyanka.mailid@gmail.com, 2Jyoti.hans@gmail.com

Abstract—Popularity tree is a binary tree which arranges nodes of Popularity tree will satisfy the following properties:

the tree in such a manner that node on root is most visited node and a) Create a binary tree that tree which can have at most
node at the end is least visited node and thus BFS traversal shows the two child nodes.
list of nodes in decreasing order of popularity. This paper shows the b) Maintains the popularity factor of every node

algorithms of various operations applied on popularity tree and its
result as well. History of every node is being stored which decides
popularity of every node and hence its positions in the tree.

c) Nodes are stored in a manner such that every node is:
i) More popular than nodes which are after it in BFS

traversal

1. INTRODUCTION i) Less popular than nodes before it in BFS traversal

d) Every visit of a node increases its popularity factor
Popularity tree is a type of Binary tree data structure that will value by 1.
arrange the nodes in a manner such that while BFS traversal e) Nodes are exchanged if a node’s popularity factor
we will get the nodes in decreasing order of popularity. The becomes more than the previous node in BFS traversal.
root node would be the most popular among all the nodes then f) On Breadth First search traversal we will get a list of
its left child then right child and so on while moving nodes in decreasing order of popularity.

downwards. A popularity factor is attached to every node and
that popularity value of any node could be in terms of number 2. BACKGROUND

of times that node has been visited]
Trees are used in databases to store huge amount of data.

Every node contains: There are so many types of trees available each having its own
“Info/Popularity factor” funct'ionali'ty storing the nodes in d_ifferent manner. Popularity

tree is taking the advantages of binary tree in a manner that
“Alphabets” shows the value of that node and complexity of searching a node randomly is less as compared

“Numbers” shows the popularity factor of each node. to any other type of data structure.

Although it is quite similar to a binary tree inheriting many of
its features like In contrast to other binary trees which

consider its info part, popularity tree stores the nodes by

/ o considering the popularity factor of various nodes.
\ Motivation of this tree also comes from splay tree, a tree
which stores the most recently visited node as the root node so
that next timeif we want to access the same node again we will
be able to reach that node very fast so that tree just keep the

record of last visited node but what about keeping the record
of not only last node but history of all time operations to make

best decision while choosing a node.
3. PROPOSED WORK

A node of a tree contains the following information:

Example of a Popularity tree is shown below:

Fig. 1: Example of Popularity Tree
Table 1: Node structure
After BFS Traversal we got nodes in decreasing order of |Left |Value |Popularity |Parent |Previous |Next |Right
popularity. child factor node node link |node | child
G/104 U/Q7T M/7T9 C/69 P/68 L/53 link link link | link

836

Priyanka Sehra Gaba and Jyoti Arora

Various operations of popularity tree which would be
implemented in this research are:

a)

b)

Insertion of a new node which will take place at the last
position of the tree as because popularity factor of a
new node in the staring is zero.

Traversing involves Breadth first search traversal

which will show all the nodes in decreasing order of

popularity.

Finding a node involves

i) First searching that node in the tree.

i) Print it.

iii) Increasing its popularity factor by 1.

iv) Check its previous node popularity factor value.
If popularity factor of current node becomes
greater than previous node popularity factor
then exchange two nodes.

4. ALGORITHM FOR VARIOUS OPERATIONS

a)

Insert(int)

i. if AVAIL==NULL then
Write: OVERFLOW and Exit.

ii.Setnewn= AVAIL and AVAIL=Left[AVAIL]

iii. Set newn[value]=data
newn[pfactor]=0
newn[left]=NULL
newn[right]=NULL
newn[parent]=NULL
newn[previous]=NULL
newn[next]=NULL

iv. If root == NULL
Set root =newn and EXIT.

v. Set front=1, rear=1 and queue[rear]=root.

vi. Repeat while queue[front]!=NULL
e Set ptr=queue[front]
o ifptr[left] == NULL then
Set ptr[left]=newn
Newn[parent]=ptr

Newn[previous]=queue[rear]

queue[rear][next]=newn and EXIT.

o if ptr[right] == NULL then

Set ptr[right]=newn
Newn[parent]=ptr

Newn[previous]=ptr[left]
Ptr[left[next]]=newn and EXIT.

e rear++
queue[rear]=ptr[left]
rear++
queue[rear]=ptr[right]

front++

b) find(int)
i) if root == NULL
Set loc=NULL and
Write: Tree empty and Exit.

ii) if root[value]==data
Set loc=root
loc[pfactor]++

Write: node found at root
And goto step (vi)

iii) top++
stack[top]=root[right]
ptr=root[left]

iv) Repeat while top!=0 || ptr'=NULL
a) if ptrl=NULL

e if ptr[value]==data then
Setloc=ptr
loc[pfactor]++

Write: node found
And goto step (vi)

o if ptr[right]!=NULL then
Settop++;
stack[top]=ptr[right]

e Set ptr=ptr[left]

b) Set ptr=stack[top];
top- -

Vv)Write: node not found and Exit.

vi) Repeat while loc[previous]!=NULL
o ifloc[pfactor] >loc[previous[pfactor]]
thencall Function
exchange(loc[previous],loc) and Exit.

c) Exchange(treeNode*nodel, treeNode *node2)

i) Set t[right]=node2[right]

ii) if nodel==root then
Set node2[right]=root->right
nodel[right]=t->right
nodel[left]=node2[left]
node2[left]=nodel
nodel[left[parent]=nodel

nodel[right[parent]]=nodel

node2[left[parent]]=node2
node2[right[parent]]=node2
nodel[parent]= node2
node2[parent]=NULL
nodel[previous]= node2
node2[previous]= NULL
nodel[next]=node2[next]

nodel[next[previous]]=nodel
node2[next]=nodel

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

Popularity Tree Operation Algorithms

837

node2[next[previous]]=node2
root=node2 and Exit.

iii) Set t1[left]=nodel[left]
t1[right]=nodel[right]
nodel[left]=node2[left]
nodel[right]=node2[right]
node2[left]=t1[left]
node2[right]=t1[right]
nodel[left[parent]]=nodel
nodel[right[parent]]=nodel
node2[left[parent]]=node2
node2[right[parent]]=node2

iv) if nodel[parent]==node2[parent] then
Set ptr=nodel[parent]
ptr[left}=node2
ptr[right]=nodel
andgoto step (vi)

v) Set nodel[parent[right]=node2
node2[parent[left]]=nodel
tempn=nodel[parent]
nodel[parent]=node2[parent]
node2[parent]=tempn

vi) Set

node2[previous]=nodel[previous]
nodel[previous]=node2
nodel[next]=node2[next]
node2[next]=nodel
node2[previous[next]]=node2
nodel[next[previous]]=nodel

d) bfs()

i) if root==NULL then
Write: No node exist in the tree and Exit.

ii) Set front=rear=1
queue[rear]=root

iii) Write: various details of node.

iv) Repeat while queue[front]'=NULL then
Set ptr=queue[front]
front++
Write: various details of node.
rear++;
queue[rear]=ptr->left;
rear++;
queue[rear]=ptr->right;

e) draw()

Repeat while I<level

i) max=pow(2,1);

i) diff=60/(2*max);

iii) for(i=1;i<=max;i++)

iv) if(m<count)
cout<<setw(diff)<<nlist[m];
m++;
cout<<setw(diff)<<" ";

else
break;
V) I++;
f) level()
i) ptr=root
ii) Repeat while ptr!'=NULL
Set ptr=ptr->left;
C++;

5. RESULTS & ANALYSIS

Perform operations on tree as per given sequence:

i Insert 10:

As Node 10 is the first node to be inserted in the tree
so it becomes the root node.

ii. Insert 20:
Node 20 will be inserted as left child of root Node i.e
Node 10.

iil. Insert 30:
Node 30 will be inserted as right child of root Node
i.e Node 10.

iv. Insert 40:
Node 40 will be inserted as left child of Node 20.

V. Insert 50:
Node 50 will be inserted as right child of Node 20.

Vi. Draw the Tree:
After all the insertions in the tree it will look like as
shown in Fig: 2

Popularity Tree functions

5. Maximum number of nodes
6. Depth of tree

Enter your choice 3

Tree is:

Do you want to continue? Press N to exit

Fig. 2: Draw the Tree

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

838

Priyanka Sehra Gaba and Jyoti Arora

Vii.

Details of every node:
This operation gives the complete detail of every
node of the tree as shown in Fig: 3

Popularity Tree functions

. Insert a new node

. 3earch a node

. Draw the tree

. Details of every node of tree

. Maximum number of nodes
. Depth of tree

Enter your choice

Details of tree:

left parent previous next right
20 ¢] ¢] 20 30
40 160 10 30 50
[c] 16 26 46 c]
20 30 50]
¢] 26 40 a]

pfactor
8]

Do you want to continue? Press N to exit

viii.

Xi.

Fig. 3: Details of Tree

Search Node 40:

After applying the search node 40 its popularity
factor will increase from 0 to 1 and it will become the
root node of the tree because of highest popularity
factor according to proposed algorithm.

Search Node 30:

After searching node 30 its popularity factor will
increase from 0 to 1 and it will become the left child
node of root node of the tree because of equal
popularity factor as the root node according to
proposed algorithm.

Search Node 30 again:

After searching node 30 again its popularity factor
will increase from 1 to 2 and it will become the root
node of the tree because of highest popularity
factoraccording to proposed algorithm.

Draw the Tree:

After all the operations in the tree it will look like as
shown in Fig: 4

Popularity Tree functions

you want te continue? Press N to exit

Fig. 4: Draw the Tree

Xii.

Details of every node:
This operation gives the complete detail of every
node of the tree as shown in Fig: 5

Popularity Tree functions

. Insert a new node

. Search a node

. Draw the tree

. Details of every node of tree
. Maximum number of nodes

. Depth of tree

Enter your choice

Details of tree:

pfactor left

parent previous
2 40 [c] [¢] 40 10
1 20 30 30 10 50
[¢] [¢] 30 40 20 [¢]
[¢] [¢] 40 10 50 [¢]
[¢] [¢] 10 20 [¢] [¢]
Do you want to continue? Press N to exit

next right

Fig. 5: Details of Tree

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

Akram Ai-Rawi, AzzedineLansari, FaouziBouslama “A NEW
NON-RECURSIVE ALGORITHM FOR BINARY SEARCH
TREE TRAVERSAL”

C. Euis, "CONCURRENT SEARCH AND INSERTION IN
AVL TREES" IEEE Trans. Comput.,Vol. C-29, Pp. 811-817,
Sept. 1980.

Daniel Dominic Sleator and Robert EndreTarjan “SELF-
ADJUSTING BINARY SEARCH TREES” Journal of the
Association for Computing Machinery. Vol. 32, No. 3, July
1985, pp. 652-686.

E. Hag, Y. Cheng and S. S. lyengar “NEW ALGORITHMS
FOR BALANCING BINARY SEARCH TREES”IEEE, June
1988.

FabrizioLuccio and Linda Pagli “REBALANCING HEIGHT
BALANCED TREES”IEEE Transactions on Computers, Vol.
C-27, No. 5, May 1978

Ravi TejaCheruku “SPLAY TREE” Indiana State University
UdiManber “CONCURRENT MAINTENANCE OF BINARY
SEARCH TREES” |IEEE Transactions on Software
Engineering, Vol. Se-10, No. 6, November 1984

Kiran Jain, PriyankaSehra “POPULARITY TREE, DATA
STRUCTURE?” International Journal of Computer Science and
Communication (ISSN 0973-7391), Volume-IV,Number-1 of
March 2013.

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

