
Jou
Pri
© K
htt

Ab
the
nod
list
alg
res
pop

1.

Po
arr
we
roo
its
dow
tha
of

Ev

“In

“A

“N

Ex

Af
pop
G/

urnal of Basic
int ISSN: 2350
Krishi Sanskri
tp://www.krish

P

bstract—Popula
e tree in such a m
de at the end is l
t of nodes in dec
gorithms of vari
sult as well. His
pularity of every

INTRODUC

pularity tree is
range the node
e will get the n
ot node would

left child th
wnwards. A po
at popularity va
times that nod

very node conta

nfo/Popularity

Alphabets” show

Numbers” show

xample of a Pop

Fi

fter BFS Trav
pularity.
104 U/97

and Applied E
0-0077; Online
ti Publications

hisanskriti.org/j

Popula

arity tree is a bin
manner that nod
least visited nod
creasing order o
ous operations
story of every n
y node and hence

CTION

s a type of Bin
es in a manner
nodes in decre
be the most po

hen right chi
opularity facto
alue of any no

de has been visi

ains:

factor”

ws the value of

ws the popularit

pularity tree is

g. 1: Example o

versal we got

M/79 C/69

Engineering Re
 ISSN: 2350-0

s
jbaer.html

arity T
Pri

E-mail: 1pri

nary tree which
de on root is mo

de and thus BFS
of popularity. Th
applied on popu
ode is being sto
e its positions in

nary tree data s
r such that wh
easing order o
opular among a
ld and so on

or is attached t
de could be in
ited

f that node and

ty factor of eac

shown below:

of Popularity Tr

nodes in dec

9 P/68 L

search
0255; Volume 2

Tree O
yanka Sehra

1,2A.P in PD
iyanka.mailid@

h arranges nodes
ost visited node a
traversal shows

his paper shows
ularity tree and
ored which deci
 the tree.

structure that w
hile BFS traver
f popularity. T
all the nodes th
n while mov
o every node a

n terms of num

d

ch node.

ree

creasing order

L/53

2, Number 10;

Operat
a Gaba1 and J

DMCE Bahadu
@gmail.com, 2Jy

s of
and
the
the

d its
ides

will
rsal
The
hen
ing
and

mber

of

Popular
a) C

t
b) M
c) N

i)

ii)
d) E

v
e) N

b
f) O

n

2. BA

Trees a
There a
function
tree is t
complex
to any o

Althoug
its feat
conside
conside

Motivat
which s
that nex
be able
record o
of not o
best dec

3. PR

A node

Left
child
link

April-June, 20

tion A
Jyoti Arora2

urgarh
Jyoti.hans@gma

rity tree will sa
Create a binar
two child node
Maintains the p
Nodes are store

More popu
traversal
Less popu

Every visit of
value by 1.
Nodes are ex
becomes more
On Breadth Fi
nodes in decrea

ACKGROUND

are used in da
are so many typ
nality storing t
taking the adv
xity of searchi
other type of da

gh it is quite si
tures like In
er its info par
ering the popula

tion of this tr
stores the most
xt timeif we wa

to reach that
of last visited

only last node b
cision while ch

ROPOSED WO

of a tree conta

Ta

Value Popu
facto

015 pp. 835-83

Algorit

ail.com

atisfy the follow
ry tree that tre
es.
popularity fact
ed in a manner
ular than node

ular than nodes
f a node incre

xchanged if a
than the previ

irst search trav
asing order of p

D

atabases to sto
pes of trees ava
the nodes in di
vantages of bin
ing a node ran
ata structure.

imilar to a bina
contrast to o

rt, popularity
arity factor of v

ree also come
t recently visite
ant to access th
node very fast
node but what

but history of a
hoosing a node

ORK

ains the followi

able 1: Node str

ularity
r

Parent
node
link

38

thms

wing properties
e which can h

or of every nod
r such that ever
s which are af

before it in BF
eases its popu

node’s popu
ous node in BF
versal we will
popularity.

ore huge amo
ailable each ha
ifferent manne
nary tree in a
domly is less a

ary tree inherit
other binary
tree stores th
various nodes.

es from splay
ed node as the
he same node a
t so that tree j
t about keepin
all time operati
.

ing information

ructure

Previous
node link

Ne
no
lin

s:
have at most

de.
ry node is:
fter it in BFS

FS traversal
ularity factor

ularity factor
FS traversal.
get a list of

ount of data.
aving its own
r. Popularity
manner that
as compared

ting many of
trees which

he nodes by

tree, a tree
root node so

again we will
just keep the
ng the record
ions to make

n:

ext
ode
nk

Right
child
link

Priyanka Sehra Gaba and Jyoti Arora

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

836

Various operations of popularity tree which would be
implemented in this research are:

a) Insertion of a new node which will take place at the last
position of the tree as because popularity factor of a
new node in the staring is zero.

b) Traversing involves Breadth first search traversal
which will show all the nodes in decreasing order of
popularity.

c) Finding a node involves
i) First searching that node in the tree.
ii) Print it.
iii) Increasing its popularity factor by 1.
iv) Check its previous node popularity factor value.

If popularity factor of current node becomes
greater than previous node popularity factor
then exchange two nodes.

4. ALGORITHM FOR VARIOUS OPERATIONS

a) Insert(int)
i. if AVAIL==NULL then

Write: OVERFLOW and Exit.

ii. Setnewn= AVAIL and AVAIL=Left[AVAIL]

iii. Set newn[value]=data
 newn[pfactor]=0
 newn[left]=NULL
 newn[right]=NULL
 newn[parent]=NULL
 newn[previous]=NULL

newn[next]=NULL

iv. If root == NULL
 Set root =newn and EXIT.

v. Set front=1, rear=1 and queue[rear]=root.

vi. Repeat while queue[front]!=NULL
 Set ptr=queue[front]
 ifptr[left] == NULL then

 Set ptr[left]=newn
 Newn[parent]=ptr
Newn[previous]=queue[rear]

queue[rear][next]=newn and EXIT.
 if ptr[right] == NULL then

 Set ptr[right]=newn
 Newn[parent]=ptr
 Newn[previous]=ptr[left]
 Ptr[left[next]]=newn and EXIT.

 rear++
 queue[rear]=ptr[left]
 rear++
 queue[rear]=ptr[right]
front++

b) find(int)
 i) if root == NULL
 Set loc=NULL and
Write: Tree empty and Exit.

 ii) if root[value]==data
 Set loc=root
 loc[pfactor]++
 Write: node found at root
 And goto step (vi)

 iii) top++
 stack[top]=root[right]
 ptr=root[left]

 iv) Repeat while top!=0 || ptr!=NULL

a) if ptr!=NULL
 if ptr[value]==data then

Setloc=ptr
 loc[pfactor]++
Write: node found
 And goto step (vi)

 if ptr[right]!=NULL then
Settop++;

 stack[top]=ptr[right]
 Set ptr=ptr[left]

b) Set ptr=stack[top];

top- -

v)Write: node not found and Exit.

 vi) Repeat while loc[previous]!=NULL

 ifloc[pfactor] >loc[previous[pfactor]]
thencall Function
exchange(loc[previous],loc) and Exit.

c) Exchange(treeNode*node1, treeNode *node2)

 i) Set t[right]=node2[right]
 ii) if node1== root then
 Set node2[right]=root->right
 node1[right]=t->right
 node1[left]=node2[left]
 node2[left]=node1
 node1[left[parent]=node1
node1[right[parent]]=node1
 node2[left[parent]]=node2
 node2[right[parent]]=node2
 node1[parent]= node2
 node2[parent]=NULL
 node1[previous]= node2
 node2[previous]= NULL
 node1[next]=node2[next]
 node1[next[previous]]=node1
 node2[next]=node1

Popularity Tree Operation Algorithms 837

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

 node2[next[previous]]=node2
 root=node2 and Exit.

 iii) Set t1[left]=node1[left]
 t1[right]=node1[right]
 node1[left]=node2[left]
 node1[right]=node2[right]
 node2[left]=t1[left]
 node2[right]=t1[right]
 node1[left[parent]]=node1
 node1[right[parent]]=node1
 node2[left[parent]]=node2
 node2[right[parent]]=node2

 iv) if node1[parent]==node2[parent] then
 Set ptr=node1[parent]
 ptr[left]=node2
 ptr[right]=node1
 andgoto step (vi)

v) Set node1[parent[right]=node2
 node2[parent[left]]=node1
 tempn=node1[parent]
 node1[parent]=node2[parent]
 node2[parent]=tempn

 vi) Set
 node2[previous]=node1[previous]
 node1[previous]=node2
 node1[next]=node2[next]
 node2[next]=node1
 node2[previous[next]]=node2
 node1[next[previous]]=node1

d) bfs()

 i) if root==NULL then
 Write: No node exist in the tree and Exit.

 ii) Set front=rear=1
 queue[rear]=root

 iii) Write: various details of node.

 iv) Repeat while queue[front]!=NULL then
 Set ptr=queue[front]
 front++
 Write: various details of node.
 rear++;
 queue[rear]=ptr->left;
 rear++;
 queue[rear]=ptr->right;

e) draw()

Repeat while l<level

i) max=pow(2,l);
ii) diff=60/(2*max);
iii) for(i=1;i<=max;i++)
iv) if(m<count)

cout<<setw(diff)<<nlist[m];
m++;
cout<<setw(diff)<<" ";

else
break;

v) l++;

f) level()

i) ptr=root
ii) Repeat while ptr!=NULL

Set ptr=ptr->left;
c++;

5. RESULTS & ANALYSIS

Perform operations on tree as per given sequence:

i. Insert 10:
As Node 10 is the first node to be inserted in the tree
so it becomes the root node.

ii. Insert 20:
Node 20 will be inserted as left child of root Node i.e
Node 10.

iii. Insert 30:
Node 30 will be inserted as right child of root Node
i.e Node 10.

iv. Insert 40:
Node 40 will be inserted as left child of Node 20.

v. Insert 50:
Node 50 will be inserted as right child of Node 20.

vi. Draw the Tree:
After all the insertions in the tree it will look like as
shown in Fig: 2

Fig. 2: Draw the Tree

Priyanka Sehra Gaba and Jyoti Arora

Journal of Basic and Applied Engineering Research
Print ISSN: 2350-0077; Online ISSN: 2350-0255; Volume 2, Number 10; April-June, 2015

838

vii. Details of every node:
This operation gives the complete detail of every
node of the tree as shown in Fig: 3

Fig. 3: Details of Tree

viii. Search Node 40:
After applying the search node 40 its popularity
factor will increase from 0 to 1 and it will become the
root node of the tree because of highest popularity
factor according to proposed algorithm.

ix. Search Node 30:
After searching node 30 its popularity factor will
increase from 0 to 1 and it will become the left child
node of root node of the tree because of equal
popularity factor as the root node according to
proposed algorithm.

x. Search Node 30 again:
After searching node 30 again its popularity factor
will increase from 1 to 2 and it will become the root
node of the tree because of highest popularity
factoraccording to proposed algorithm.

xi. Draw the Tree:
After all the operations in the tree it will look like as
shown in Fig: 4

Fig. 4: Draw the Tree

xii. Details of every node:
This operation gives the complete detail of every
node of the tree as shown in Fig: 5

Fig. 5: Details of Tree

REFERENCES

[1] Akram Ai-Rawi, AzzedineLansari, FaouziBouslama “A NEW
NON-RECURSIVE ALGORITHM FOR BINARY SEARCH
TREE TRAVERSAL”

[2] C. Euis, "CONCURRENT SEARCH AND INSERTION IN
AVL TREES" IEEE Trans. Comput.,Vol. C-29, Pp. 811-817,
Sept. 1980.

[3] Daniel Dominic Sleator and Robert EndreTarjan “SELF-
ADJUSTING BINARY SEARCH TREES” Journal of the
Association for Computing Machinery. Vol. 32, No. 3, July
1985, pp. 652-686.

[4] E. Haq, Y. Cheng and S. S. Iyengar “NEW ALGORITHMS
FOR BALANCING BINARY SEARCH TREES”IEEE, June
1988.

[5] FabrizioLuccio and Linda Pagli “REBALANCING HEIGHT
BALANCED TREES”IEEE Transactions on Computers, Vol.
C-27, No. 5, May 1978

[6] Ravi TejaCheruku “SPLAY TREE” Indiana State University
[7] UdiManber “CONCURRENT MAINTENANCE OF BINARY

SEARCH TREES” IEEE Transactions on Software
Engineering, Vol. Se-10, No. 6, November 1984

[8] Kiran Jain, PriyankaSehra “POPULARITY TREE, DATA
STRUCTURE” International Journal of Computer Science and
Communication (ISSN 0973-7391), Volume-IV,Number-I of
March 2013.

