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Various operations of popularity tree which would be 
implemented in this research are: 

a) Insertion of a new node which will take place at the last 
position of the tree as because popularity factor of a 
new node in the staring is zero. 

b) Traversing involves Breadth first search traversal 
which will show all the nodes in decreasing order of 
popularity. 

c) Finding a node involves  
i) First searching that node in the tree. 
ii) Print it.  
iii) Increasing its popularity factor by 1. 
iv) Check its previous node popularity factor value. 

If popularity factor of current node becomes 
greater than previous node popularity factor 
then exchange two nodes. 

4. ALGORITHM FOR VARIOUS OPERATIONS 

a) Insert(int) 
i.  if AVAIL==NULL then  

Write: OVERFLOW and Exit. 
 

ii. Setnewn= AVAIL and AVAIL=Left[AVAIL]  
 

iii.  Set newn[value]=data 
  newn[pfactor]=0 
  newn[left]=NULL 
  newn[right]=NULL 
  newn[parent]=NULL 
  newn[previous]=NULL 

newn[next]=NULL 
 

iv.  If root == NULL 
 Set root =newn and EXIT. 
 

v.  Set front=1, rear=1 and queue[rear]=root. 
 

vi.  Repeat while queue[front]!=NULL 
 Set ptr=queue[front] 
 ifptr[left] == NULL then  

 Set ptr[left]=newn 
 Newn[parent]=ptr 
Newn[previous]=queue[rear] 

queue[rear][next]=newn and EXIT. 
 if ptr[right] == NULL then 

 Set ptr[right]=newn 
  Newn[parent]=ptr 
 Newn[previous]=ptr[left] 
 Ptr[left[next]]=newn and EXIT. 

 rear++ 
 queue[rear]=ptr[left] 
 rear++ 
 queue[rear]=ptr[right] 
front++   
 

b) find(int) 
 i) if root == NULL 
  Set loc=NULL and 
Write: Tree empty and Exit. 
 
 ii) if root[value]==data 
  Set loc=root 
 loc[pfactor]++ 
 Write: node found at root 
 And goto step (vi) 
 
 iii) top++ 
 stack[top]=root[right] 
 ptr=root[left] 
 
 iv) Repeat while top!=0 || ptr!=NULL 

a) if ptr!=NULL 
 if ptr[value]==data then  

Setloc=ptr 
  loc[pfactor]++ 
Write: node found 
  And goto step (vi) 

 if ptr[right]!=NULL then 
Settop++; 

  stack[top]=ptr[right] 
 Set ptr=ptr[left] 

 
b) Set ptr=stack[top]; 

top- - 
 

v)Write: node not found and Exit. 
 
 vi) Repeat while loc[previous]!=NULL 

 ifloc[pfactor] >loc[previous[pfactor]]  
thencall Function  
exchange(loc[previous],loc) and Exit. 

 
c) Exchange(treeNode*node1, treeNode *node2) 
 
 i) Set t[right]=node2[right] 
 ii) if node1== root then 
  Set node2[right]=root->right 
  node1[right]=t->right 
  node1[left]=node2[left] 
  node2[left]=node1 
  node1[left[parent]=node1 
node1[right[parent]]=node1 
  node2[left[parent]]=node2 
  node2[right[parent]]=node2 
  node1[parent]= node2 
  node2[parent]=NULL 
  node1[previous]= node2 
  node2[previous]= NULL 
  node1[next]=node2[next]  
 node1[next[previous]]=node1 
  node2[next]=node1 
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  node2[next[previous]]=node2 
  root=node2 and Exit. 
 
 iii) Set t1[left]=node1[left] 
  t1[right]=node1[right] 
  node1[left]=node2[left] 
  node1[right]=node2[right] 
  node2[left]=t1[left]  
  node2[right]=t1[right] 
  node1[left[parent]]=node1 
  node1[right[parent]]=node1 
  node2[left[parent]]=node2 
  node2[right[parent]]=node2 
 
 iv) if node1[parent]==node2[parent] then 
 Set  ptr=node1[parent] 
  ptr[left]=node2 
  ptr[right]=node1 
  andgoto step (vi) 
  
v) Set node1[parent[right]=node2 
  node2[parent[left]]=node1 
  tempn=node1[parent] 
  node1[parent]=node2[parent] 
  node2[parent]=tempn 
 
 vi) Set      
 node2[previous]=node1[previous] 
  node1[previous]=node2 
  node1[next]=node2[next] 
  node2[next]=node1 
  node2[previous[next]]=node2 
  node1[next[previous]]=node1 
 

d) bfs() 
 
 i) if root==NULL then  
  Write: No node exist in the tree and Exit. 
 
 ii) Set front=rear=1 
 queue[rear]=root 
 
 iii) Write: various details of node. 
 
 iv) Repeat while queue[front]!=NULL then 
  Set ptr=queue[front] 
  front++ 
  Write: various details of node. 
  rear++; 
  queue[rear]=ptr->left; 
  rear++; 
  queue[rear]=ptr->right; 
 

e) draw()  
 

Repeat while l<level  

i) max=pow(2,l);  
ii) diff=60/(2*max);  
iii) for(i=1;i<=max;i++)  
iv) if(m<count)  

cout<<setw(diff)<<nlist[m];  
m++;  
cout<<setw(diff)<<" ";  

else 
break;  

v)  l++;  
 

f) level()  
 

i) ptr=root  
ii) Repeat while ptr!=NULL  

Set ptr=ptr->left;  
c++; 

5. RESULTS & ANALYSIS 

Perform operations on tree as per given sequence: 

i. Insert 10: 
As Node 10 is the first node to be inserted in the tree 
so it becomes the root node. 

ii. Insert 20: 
Node 20 will be inserted as left child of root Node i.e 
Node 10. 

iii. Insert 30: 
Node 30 will be inserted as right child of root Node 
i.e Node 10. 

iv. Insert 40: 
Node 40 will be inserted as left child of Node 20. 

v. Insert 50: 
Node 50 will be inserted as right child of Node 20. 

vi. Draw the Tree: 
After all the insertions in the tree it will look like as 
shown in Fig: 2 

 

Fig. 2: Draw the Tree 
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vii. Details of every node: 
This operation gives the complete detail of every 
node of the tree as shown in Fig: 3 

 

 

Fig. 3: Details of Tree 

viii. Search Node 40: 
After applying the search node 40 its popularity 
factor will increase from 0 to 1 and it will become the 
root node of the tree because of highest popularity 
factor according to proposed algorithm. 

ix. Search Node 30: 
After searching node 30 its popularity factor will 
increase from 0 to 1 and it will become the left child 
node of root node of the tree because of equal 
popularity factor as the root node according to 
proposed algorithm. 

x. Search Node 30 again: 
After searching node 30 again its popularity factor 
will increase from 1 to 2 and it will become the root 
node of the tree because of highest popularity 
factoraccording to proposed algorithm. 

xi. Draw the Tree: 
After all the operations in the tree it will look like as 
shown in Fig: 4 
 

 

Fig. 4: Draw the Tree 

xii. Details of every node: 
This operation gives the complete detail of every 
node of the tree as shown in Fig: 5 

 

 

Fig. 5: Details of Tree 
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